The score-based query attacks (SQAs) pose practical threats to deep neural networks by crafting adversarial perturbations within dozens of queries, only using the model's output scores. Nonetheless, we note that if the loss trend of the outputs is slightly perturbed, SQAs could be easily misled and thereby become much less effective. Following this idea, we propose a novel defense, namely Adversarial Attack on Attackers (AAA), to confound SQAs towards incorrect attack directions by slightly modifying the output logits. In this way, (1) SQAs are prevented regardless of the model's worst-case robustness; (2) the original model predictions are hardly changed, i.e., no degradation on clean accuracy; (3) the calibration of confidence scores can be improved simultaneously. Extensive experiments are provided to verify the above advantages. For example, by setting $\ell_\infty=8/255$ on CIFAR-10, our proposed AAA helps WideResNet-28 secure 80.59% accuracy under Square attack (2500 queries), while the best prior defense (i.e., adversarial training) only attains 67.44%. Since AAA attacks SQA's general greedy strategy, such advantages of AAA over 8 defenses can be consistently observed on 8 CIFAR-10/ImageNet models under 6 SQAs, using different attack targets, bounds, norms, losses, and strategies. Moreover, AAA calibrates better without hurting the accuracy. Our code is available at https://github.com/Sizhe-Chen/AAA.
translated by 谷歌翻译
深度神经网络(DNN)被视为易受对抗性攻击的影响,而现有的黑匣子攻击需要广泛查询受害者DNN以实现高成功率。对于查询效率,由于它们的梯度相似度(GS),即代理的攻击梯度与受害者的攻击梯度类似,因此使用受害者的代理模型来生成可转移的对抗性示例(AES)。但是,通常忽略了它们对输出的相似性,即预测相似性(PS),以在不查询受害者的情况下通过代理过滤效率低效查询。要共同利用和还优化代理者的GS和PS,我们开发QueryNet,一个可以显着减少查询的统一攻击框架。 Querynet通过多识别代理人创造性地攻击,即通过不同的代理商为一个样本工艺几个AES,并且还使用代理人来决定查询最有前途的AE。之后,受害者的查询反馈累积以优化代理人的参数,还可以优化其架构,增强GS和PS。虽然Querynet无法获得预先接受预先训练的代理人,但根据我们的综合实验,它与可接受的时间内的替代方案相比,它会降低查询。 ImageNet,只允许8位图像查询,无法访问受害者的培训数据。代码可在https://github.com/allenchen1998/querynet上获得。
translated by 谷歌翻译
深度学习在各种软件工程任务中广泛使用,例如,节目分类和缺陷预测。虽然该技术消除了特征工程所需的过程,但源代码模型的构建显着影响了这些任务的性能。最近的作品主要集中在通过引入从CFG提取的上下文依赖项来补充基于AST的源代码模型。但是,所有这些都关注基本块的表示,这是上下文依赖性的基础。在本文中,我们集成了AST和CFG,并提出了一种嵌入了分层依赖项的新型源代码模型。基于此,我们还设计了一种神经网络,这取决于图表关注机制。特殊地,我们介绍了基本块的句法结构,即其对应的AST,在源代码模型中提供足够的信息并填补间隙。我们在三种实际软件工程任务中评估了该模型,并将其与其他最先进的方法进行了比较。结果表明,我们的模型可以显着提高性能。例如,与最佳性能的基线相比,我们的模型将参数的比例降低了50 \%并实现了对程序分类任务的准确性的4 \%改进。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Digital engineering transformation is a crucial process for the engineering paradigm shifts in the fourth industrial revolution (4IR), and artificial intelligence (AI) is a critical enabling technology in digital engineering transformation. This article discusses the following research questions: What are the fundamental changes in the 4IR? More specifically, what are the fundamental changes in engineering? What is digital engineering? What are the main uncertainties there? What is trustworthy AI? Why is it important today? What are emerging engineering paradigm shifts in the 4IR? What is the relationship between the data-intensive paradigm and digital engineering transformation? What should we do for digitalization? From investigating the pattern of industrial revolutions, this article argues that ubiquitous machine intelligence (uMI) is the defining power brought by the 4IR. Digitalization is a condition to leverage ubiquitous machine intelligence. Digital engineering transformation towards Industry 4.0 has three essential building blocks: digitalization of engineering, leveraging ubiquitous machine intelligence, and building digital trust and security. The engineering design community at large is facing an excellent opportunity to bring the new capabilities of ubiquitous machine intelligence and trustworthy AI principles, as well as digital trust, together in various engineering systems design to ensure the trustworthiness of systems in Industry 4.0.
translated by 谷歌翻译
Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译